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75230 Paris Cedex 05, France.

Received June 30, 2000; final November 8, 2000

This paper deals with solutions to the Vlasov–Poisson system with an infinite

mass. The solution to the Poisson equation cannot be defined directly because

the macroscopic density is constant at infinity. To solve this problem, we

decompose the solution to the kinetic equation into a homogeneous function

and a perturbation. We are then able to prove an existence result in short time

for weak solutions to the equation for the perturbation, even though there are

no a priori estimates by lack of positivity.
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1. INTRODUCTION

We consider the motion of an infinite number of particles interacting

through an electrostatic or gravitational potential in the whole space. The

aim of this paper is to investigate the behaviour of the system when the

density r of particles is a non-vanishing constant at infinity. This implies

that the total mass or charge and the kinetic energy of the system are

infinite.

This question arises for instance as an approximation of a large system

of particles in which we are only interested in what is happening in the

center. In this case, it is natural to assume that the system is infinite in size

and thus total mass, since the typical length scale that we want to consider

is very small in comparison to the scale of the system. Moreover for



numerical simulations in particular, it is certainly less costly to do this

approximation.

The first difficulty is, of course, to define the dynamics since, a priori,

the forces acting on the particles are diverging. This problem is solved by

decomposing a solution into a particular function which is a solution only

formally and a perturbation. The density for the perturbation can then be

assumed to decrease at infinity, at the initial time.

The main result of the paper is to show that the corresponding dyna-

mics is stable for at least a short period of time. This means, more pre-

cisely, that the density of the perturbation still nicely decreases for a short

time. It ensures that no infinite amount of mass can be added to the per-

turbation due to the influence of the interactions.

We use here a mean field approximation for the dynamics. As a con-

sequence it is described by the Vlasov–Poisson system on the probability

distribution f(t, x, v) in the phase space of the particles.

3
“

“t
f+v ·Nxf+NU·Nvf=0, t ¥ R+, (x, v) ¥ R6

DU=ar

r(t, x)=F
R

6
f(t, x, v) dv

f(t=0, x, v)=f0(x, v)

(1.1)

The coefficient a depends on the nature of the interaction: a=1 for the

electrostatic potential and a=−1 for the gravitational potential. The

results presented here can also be proved in dimensions one or two with

some slight modifications but, for the sake of simplicity, we restrict our-

selves to three dimensions in space.

The Poisson equation (second line of (1.1)) has a uniquely defined

solution by convolution when r is in some Lp with p between 1 and 3.

However for more general r with no precise decay at infinity, we cannot

use the convolution formula or demand any decay of the solution to get

uniqueness. Therefore, following the approach initiated by G. Rein and

A. D. Rendall (see ref. 22), the solution to the Poisson equation with a

constant c(t) plus a function r in Lp (1 [ p [ 3) as right-hand side is

defined by

U(t, x)=a
c(t)
2

|x|2−
a

4p
1
|x|

a r(t, x) (1.2)
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Up to a constant, the first part in U is the potential created inside a ball

centered at the origin by charges uniformly distributed in this ball with a

concentration c and the condition that U vanishes on the boundary of the

ball.

Consequently, it is natural to decompose the solution to (1.1) into a

homogeneous solution plus a perturbation which vanishes at infinity. If we

denote by c(t) the associated macroscopic density, the homogeneous solu-

tion F satisfies

“

“t
F+v ·NxF+ac(t) x ·NvF=0 (1.3)

Following ref. 22, we consider a solution of the form F(a(t) x+b(t) v) with
F a non-negative and differentiable function whose integral (over R3) is

normalized to 1. In this case, F satisfies the Vlasov–Poisson system under

the conditions

3
ȧ(t)+

a

b2=0, ḃ(t)+a(t)=0

c(t)=b−3

(1.4)

Finally, when combining (1.1) with (1.3) we obtain for the perturbation f

3
“

“t
f+v ·Nxf+(ac(t) x+E) ·Nvf=−bE ·NF(ax+bv)

E(t, x)=+a
x
|x|3

a r(t, x), r=F f(t, x, v) dv

f(t=0, x, v)=f0(x, v)

(1.5)

At the end of the paper, we will only consider initial data f0 such that

f0+F(a(0) x+b(0) v) \ 0 (1.6)

We first state precisely the existence and behaviour of the solutions to (1.4).

In the electrostatic case, we have the lemma (proved in Section 2).

Lemma 1.1. Given any initial data a(0) and b(0) > 0, there exists a

unique solution (a, b), defined on all [0,.[, to the system (1.4) with a=1.
Moreover
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(i) If a(0) \ 0 then there exists t0 such that a(t0)=0 and a is

decreasing.

(ii) If a(0) < 0 then it remains negative for all times.

As for the gravitational case, the following result was proved in ref. 22.

Lemma 1.2. There exists a unique solution (a, b) to (1.4) with

a=−1 on the maximal interval of existence [0, T[ with

(i) if a(0) [−`2b−1(0), T=+., and a remains negative,

(ii) if a(0) >−`2b−1(0) then T<., limtQT b(t)=0, and a
becomes positive if it was not already so.

For both the electrostatic and the gravitational case, it is possible to

prove the existence of weak solutions to Eq. (1.5) locally in time, which

means on a time interval depending on the size of the initial data.

Theorem 1.1 (local weak solutions). We assume that F \ 0,
F ¥ L.(R3), f0 ¥ L.(R6), that the solution (a, b) to (1.4) exists on [0, T],
and that for some k > 5

(1+|t|k) F(t) ¥ L1(R3), E0 ¥ L2(R3)

F
R

6
(1+|ax+bv|k) |f0|2 (x, v) dx dv <+.

(1.7)

then there exists 0 < t* [ T and f ¥ L.([0, t*]×R6) a solution in distri-

butional sense to (1.5) such that

F
R

6
(1+|ax+bv|k) |f|2 (t, x, v) dx dv ¥ L.([0, t*])

r(t, x) ¥ L.([0, t*], L (kŒ+3)/3(R3)) for 3 < kŒ [ k

E(t, x) ¥ L.([0, t*], L2(R3))

(1.8)

Remarks

1. The estimate on r gives an Lp estimate for the field E, namely E
belongs to L.([0, t*], Lp(R3)) with 2 [ p [ 3 k+3

6−k or +. if k > 6.
2. The kernel |ax+bv| here plays the role of a dispersion estimate like

the kernel |x−vt| in the usual Vlasov–Poisson system. It is already known
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that existence results for Vlasov systems can be obtained with moments

based on such kernels (see refs. 6 or 19), or for Boltzmann equation (see

ref. 18).

Although we do not know whether weak solutions exist globally in

time, we can show a conditional existence result for strong solutions to the

system (1.5). This is made precise by the following theorem, which studies

the propagation of moments. Let us first define (c, d), the solution to

ċ(t)=−d(t), ḋ(t)=−ac(t) c(t)

c(0)=0, d(0)=1 (1.9)

Theorem 1.2 (strong solutions). With the hypothesis of Theorem 1.1,

assume also that d(t) remains positive and bounded on [0, T], and that for

k0 > 3 and for all 0 [ k < k0

F ¥ L1 5 L3(R3), |t|k |NF| ¥ L1

f ¥ L.([0, T], L1(R6)), E ¥ L1([0, T]×R3)

F
R

6
|a(0) x+b(0) v|k |f0(x, v) | dx dv <+.

(1.10)

then all these moments are propagated, for any 0 [ k < k0

F
R

6
|a(t) x+b(t) v|k |f| (t, x, v) dx dv ¥ L.([0, T]) (1.11)

Remarks

1. This theorem is conditional on the existence of some nice weak

solutions. We require that the solution be in L1, and so be the force field E
which it creates. Unfortunately, we cannot prove either of these conditions.

The natural scaling for the field E is L3/2, but here, since we may assume

that the integral of f is initially zero (and this property is trivially preserved

in time), the L1 norm of E is bounded by the first moment in x of f,
> |x| · |f| dx dv. For the original Vlasov–Poisson system (1.3), it is known

that this moment in x remains bounded if it was initially. The equivalent of

our hypotheses for this theorem, for the original Vlasov–Poisson system,

are then an easy consequence of the theory of existence of weak solutions;

such a theory is missing for the system (1.5).
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2. The assumption on d is automatically satisfied if a=1. This

assumption is needed to control the characteristics in the proof.

3. For the original Vlasov–Poisson system, it is known that all

moments of order k larger than 2 are propagated (see ref. 7), instead of 3

for this system.

4. We obtain strong solutions (a representation of the solution with

the characteristics) to the system (1.5) when k0 \ 6 because in this case E
belongs to L. in x.

The Lemma 1.1 is proved in Section 2. Section 3 is devoted to the

proof of Theorem 1.1 and Section 4 to Theorem 1.2.

The systems (1.3) or (1.4) and (1.5) were already derived in ref. 22.

G. Rein and A. D. Rendall then performed a change of variables to get rid

of the explicit x in the system (1.5), and afterwards they studied the exis-

tence of classical solutions in a periodic domain in the x variable. Here we

are interested in the problems arising from the infinite mass. Therefore we

do not work in a periodic domain and we face different issues.

On the other hand, for finite mass, the existence of weak solutions to

the Vlasov–Poisson system (1.1) is well known since A. A. Arsenev, (1) and

stronger solutions were studied by J. Batt and G. Rein, (4) E. Horst, (14, 15),

K. Pfaffelmoser, (20) J. Schaefer, (23) P. L. Lions and B. Perthame (17) and

I. Gasser, P.-E. Jabin and B. Perthame. (7)The equation (1.5) for the per-

turbation is close the one found in refs. 8 and 9 where R. Glassey and

J. Schaeffer study the asymptotic decay of the solutions to a one dimen-

sional linearized Vlasov–Poisson system. Other results of stability around

particular solutions to the Vlasov–Poisson system have been obtained by

Y. Guo, (10) Y. Guo and G. Rein (11) for steady solutions introduced in ref. 3,

and Y. Guo and W. Strauss around homogeneous solutions in a neutral

plasma in ref. 12 or around BGK solutions in ref. 13. Another motivation

for studying this system comes from systems of particles moving in a

Stokes flow where it is natural to study ‘‘infinite systems’’ (see refs. 16, 2 or

21).

2. PROOF OF LEMMA 1.1

We multiply the first equation of (1.4) by ḃ and with the second

equation

1
2
b2+

1
b
=const.<+. (2.1)

This shows that b is defined and positive for all time. The first equation of

(1.4) implies that a is strictly decreasing. Thus if a is negative initially, it
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remains so. On the contrary, if a is initially non-negative, then it becomes

negative in a finite time since, as long as it is non-negative, b is decreasing

and thus ȧ also.

3. PROOF OF THE THEOREM 1.1

We recall first the two easy a priori estimates deduced from (1.5) and

(1.6)

||f(t, ., .)||L. [ ||f0||L.+||F||L., f(t, x, v) \−F(ax+bv) (3.1)

To prove the theorem, we consider a sequence fn of solutions to (1.5) with

qn(x) NF(ax+bv) instead of NF(ax+bv) in the right-hand side. For qn

regular enough (in L1 5 L.), these solutions are known to exist. We then

let qn converge uniformly toward 1. The problem is to get Lp estimates for

En, uniformly in n, and then to show that En converge strongly toward E.
This section is divided into three parts. First of all, we explain how we

can get estimates on r from moments of the form > (1+|ax+bv|k) |f|2 and
we show a direct estimate on E in terms of the same moment. Afterwards,

we prove that such a moment remains bounded for a finite time indepen-

dent of n with the assumptions of Theorem 1.1. Finally, we adapt the

standard argument to prove the compactness of En.

3.1. Estimates on r and E

This part is devoted to the proof of two lemmas.

Lemma 3.1. On any time interval [0, T] where b(t) > 0, for k > 3
and any f ¥ L.(R6), we have for some constant K(||f||L., (min b)−1)

>FR
3
f(x, v) dv>L(k+3)/3

[ K 1F (1+|ax+bv|k) |f|2 dx dv2
3/(k+3)

(3.2)

Proof. The argument is classical (see ref. 19 for instance). It makes

no difference to work with 1+|ax+bv|k instead of the usual 1+|v|k. L

This estimate on r implies a corresponding estimate on the force field

E in some Lp but with p > 6. However the system (1.5) has a source term

whose decay in the space variable is limited by the decay of E. Hence to

propagate a moment of f2, it is necessary to control the L2 norm of E,
which is done by the lemma
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Lemma 3.2. On any tine interval [0, T] where b(t) > 0, for any

k > 5, we have for some constant K((min b)−1, max a)

F |En |2 dx [ K F
t

0
F |En |2 (s, x) dx ds

+K F
t

0
||En(s, .)||L2 1F (1+|ax+bv|k) |fn |2 dx dv2

1/2

ds (3.3)

Proof. This estimate is a consequence of the fact that En satisfies the

Poisson equation associated with fn. More precisely, let us compute

F En · (ax+bv) fn dx dv=a F En · xrn dx+b F En · jn dx (3.4)

Now since En=NVn with DVn=arn

F En · xrn dx=a F x ·NVn DVn dx=−a F |NVn |2 dx−a F x ·NVn DVn dx

=−
a

2
F |En |2 dx (3.5)

Whereas the continuity equation implies

F En · jn dx=F jn ·NVn dx=−F Vn div jn dx

=F Vn “trn dx=a F Vn “t DVn dx

=−
a

2
d
dt

F |NVn |2 dx=−
a

2
d
dt

F |En |2 dx (3.6)

Using the system (1.4), we deduce from Eqs. (3.5) and (3.6)

d
dt

b F |En |2 dx [ 3 |a| F |En |2 dx+: F En · (ax+bv) fn dx dv: (3.7)
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It remains to integrate in time and bound this last integral to conclude

: F En · (ax+bv) fn dx dv: [ F
|En |

1+|ax+bv|k/2−1 (1+|ax+bv|k/2) |fn | dx dv

[ K ||En ||L2 1F (1+|ax+bv|k) |fn |2 dx dv2
1/2

(3.8)

3.2. Propagation of Moments in Short Time

We prove here that there exists a time t > 0, such that the moment

> (1+|ax+bv|k) |fn |2 remains finite on [0, t], uniformly in n. To do so, we

multiply the equation (1.5) by (1+|ax+bv|k) fn and we integrate over all

R6. Since a and b are solutions to the system (1.4), we find

d
dt

F (1+|ax+bv|k) |fn |2 dx dv [ kb F |ax+bv|k−1 |En | · |fn |2 dx dv

+b F |En |(1+|ax+bv|k) |fn | · |NF(ax+bv) | dx dv (3.9)

Thanks to the hypothesis (1+|t|k) NF ¥ L1, the second term is bounded

quite easily

b F | En |(1+|ax+bv|k) |fn | · |NF(ax+bv) | dx dv [ K ||En ||L2 ||fn ||L2 (3.10)

To bound the first term in the right hand-side, we first apply the following

lemma which is only a more general version of the Lemma 3.1 and is

proved the same way.

Lemma 3.3. There exists a constant K(||fn ||L.) such that

> F (1+|ax+bv|k−1) |fn |2 dv>L(k+3)/(k+2)

[ K 1F (1+|ax+bv|k) |fn |2 dx dv2
(k+2)/(k+3)

(3.11)

We deduce that

F |ax+bv|k−1 |En | · |fn |2 dx dv

[ K ||En ||Lk+3 1F (1+|ax+bv|k) |fn |2 dx dv2
(k+2)/(k+3)

(3.12)
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Now, we recall that in dimension 3

||E||Lk+3 [ K ||r||L3(k+3)/(k+6) (3.13)

Since k > 5, we have the inequality 2 < 3 k+3
k+6 [ k+3

3 and we can apply the

Lemma 3.1 to obtain

||E||Lk+3 [ K 1F (1+|ax+bv|k) |fn |2 dx dv2
3/(kŒ+3)

(3.14)

with kŒ+3
3 =3 k+3

k+6. As a consequence, we eventually get the estimate

d
dt

F (1+|ax+bv|k) |fn |2 dx dv [ K ||En ||L2 ||fn ||L2

+K 1F (1+|ax+bv|k) |fn |2 dx dv2
c

(3.15)

Together with the Lemma 3.2, the Gronwall lemma implies that

> (1+|ax+bv|k) |fn |2 is bounded on some interval [0, t]. Unfortunately the

coefficient c is larger than 1, and therefore we cannot obtain a global

bound on the whole interval [0, T].

3.3. Compactness of the Force Field

We now work on the interval [0, t*] where > (1+|ax+bv|k) f2
n is

bounded. As a consequence rn belongs to L.([0, t*], L (kŒ+3)/3) for all

3 < kŒ [ k with a uniform bound. Hence En is weakly compact in

L.([0, t*], Lp) for some p. We decompose En into the sum of ER
n and FR

n

with

ER
n=−1

a

4p
kR(x)

x
|x|32 a r (3.16)

with k a C1 function supported in the annulus {1/R [ |x| [ R}. Notice here

that FR
n converges toward zero in L.([0, t], Lp) when R vanishes uniformly

in n. As for ER
n , we recall that r satisfies the continuity equation

“tr(t, x)+div j=0 (3.17)

where j(t, x)=> vf(t, x, v) dv is the current. We can rewrite j as

j(t, x)=F 1
a
b
x+v2 f dv−F

a
b
xf dv=H̃−

a
b
xr (3.18)
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The modified current H̃ belongs to some L.([0, t*], Lq) thanks to the

boundedness of the moment, and the term ab−1xr to L r
loc with 2 < r

[ (k+3)/3. As a consequence “tr belongs to L.([0, t*], W−1, q+W−1, r
loc ).

For a fixed R this implies that ER
n is compact in L.([0, t*], Lp). We now

conclude that it is possible to extract a sub-sequence such that En converges

in L.([0, t*], Lp) toward − a
4p

x
|x|3

a r where r is the weak limit of rn. This

shows that a weak limit f of fn satisfies the system (1.5).

4. PROOF OF THE THEOREM 1.2

In this section, we prove the propagation of moments of the form

> |ax+bv|k f for all k < k0 with k0 > 3. Since we already know that the L1

norm of f is bounded, the moment of order k is bounded by the moment

of order kŒ if kŒ> k. Hence, we only consider moment of order 3 < k
< k0. We use arguments similar to those developped in refs. 17 and 7.

Let FR ¥ C0(B(0, 2R)) be a function with value 1 on B(0, R). We

decompose the field E into a short range part ER and a long range FR with

ER=
a

4p 1
x
|x|3
FR(x)2 a r (4.1)

Now we define the characteristics

Ẋ(s)=−V(s), V̇(s)=−acX(s)−FR(X(s))

(X(0), V(0))=(x, v)
(4.2)

The solution f to the system (1.5) can now be written as

f(t, x, v)=f0(X(t), V(t))+F
t

0
NV(ERf+ERF)(t−s, X(s), V(s)) ds (4.3)

And as a consequence, denoting (Y, W) the inverse of (X, V)

r(t, x)=r0(t, x)+divx F
t

0
F
R
3
(ER(f+F))(t−s, X(s), V(s))

“Y
“w

dv ds

−F
t

0
F
R

3
(ER(f+F))(t−s, X(s), V(s)) 1Nx

“Y
“w

+Nv
“W
“w 2 (4.4)

We now apply the lemma

Lemma 4.1. The following inequalities hold for some constant K

:
“Y
“w

(s): [ Ks, :Nx
“Y
“w

(s): [ Ks, :Nv
“W
“w

(s): [ Ks (4.5)
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Proof. Notice that FR is quite regular, in particular all its derivatives

exist and belong to L.. Hence all the derivatives of the characteristic field

and of the inverse (Y, W) are bounded. All the quantities above are thus

lipschitz in time s and since they all vanish at s=0 thanks to the initial

condition on (X, V), we deduce the lemma. L

Thus we would like to control quantities of the form

> F
t

0
F
R

3
s(ERf+ERF)(t−s, X(s), V(s)) ds dv>Lp

(4.6)

Let us begin with

> F
t

0
F
R

3
s(ERf)(t−s, X(s), V(s)) ds dv>Lp

[ K > F
t

0
s 1F |ER |3/2+e (t−s, X) dv2

2/3−e

×1F |f| (t−s, X, V) dv2
1/3+e

ds>Lp

[ K > F
t

0
s 1F |ER |3/2+e (t−s, x) :det

“Y
“w : dx2

2/3−e

×1F |f| (...) dv2
1/3+e

ds>Lp
(4.7)

We then need the lemma

Lemma 4.2. We have the inequality for a constant K

:det
“Y
“w : [

K
s3 (4.8)

Proof. Choosing R large enough, the characteristic field (X, V) can
be made as close as we wish from (X0, V0) which satisfies

Ẋ0=−V0, V̇0=−acX0, X0(0)=x, V0(0)=v (4.9)

For this last field, we have

“Ẋ0

“v
=−
“V0

“v
,

“X0

“v
(0)=0,

“V̇0

“v
=−ac

“X0

“v
,

“V0

“v
(0)=Id (4.10)

1118 Jabin



For a=1, we deduce immediately that “V
“v has all its coefficients on the

diagonal increasing (the others are zero). The diagonal coefficients of “V
“v is

given by the value of d, the solution to the system (1.9). So for a=−1, the
hypothesis of Theorem 1.2 also ensures that, on the time interval [0, T], “V

“v

is always larger than K.Id, with K a positive constant. As a consequence,

the lemma is true for X0 and so for X with R large enough. L

Since we already know that E and thus ER are bounded in L3/2+e, we

get

> F
t

0
F
R

3
s(ERf)(t−s, X(s), V(s)) ds dv>Lp

[ K > F
t

0
s−1+e

1 F |f| (t−s, X(s), V(s)) dv2
1/(3+e)

ds>Lp

[ K sup
t 1F |aX+bV|p−3+e |f| (...) dv dx2

1/p

[ K sup
t 1F |ax+bv|p−3+e |f| (t−s, x, v) dv dx2

1/p

(4.11)

since, if |aX+bV| is bounded by L, then v is in a ball of radius of order L.
This is due to the fact that “V

“v can be very close to K.Id with K positive and

bounded for R large enough. With the same argument we obtain that

> F
t

t0
F
R

3
s(ERf)(t−s, X(s), V(s)) ds dv>Lp

[ K log(t0) sup
t 1F |ax+bv|p−3 |f| (t−s, x, v) dv dx2

1/p

(4.12)

We denote q such that 1/p+1=2/3+1/q and p* the conjugate exponent of

p. Let us now turn to

> F
t

0
F
R

3
sER(t−s, X) F(a(t−s) X(s)+b(t−s) V(s)) ds dv>Lp

[ 1F
t

0
s 1F |ER |1−p*/2p (t−s, X) Fp*−qp*/p(a(.) X(s)+b(.) V(s)) dv2

p/p

×F
R

3
|ER |3/2 (t−s, X) Fq(a(.) X(s)+b(.) V(s)) ds dv dx2

1/p

(4.13)

The Vlasov–Poisson System with Infinite Mass and Energy 1119



Of course, we have

F |ER |1−p*/2p (t−s, X) Fp*−qp/p*(a(.) X(s)+b(.) V(s)) dv

[ 1F |ER |3/2 (...) dv2
2p*/3p−p*/p2

1F F
q(...) dv2

p*/pq−p*/p2

[ 1F |ER |3/2 (t−s, x) dx :det
“Y
“w :2

2p*/3p−p*/p2

×1F F
q(a(.) X(V−1)+b(.) v) :det

“W
“w : dv2

p*/pq−p*/p2

[ Ks (3/p−2) p*/p (4.14)

since, as we have already seen, det “Y
“w is less than Ks−3 and det “W

“w is

bounded on the time interval we consider. We also know that

sup
t

F
R

6
|ER |3/2 (t−s, X) Fq(a(.) X(s)+b(.) V(s)) dv dx [ K (4.15)

Finally, we obtain

> F
t

0
F
R

3
sER(t−s, X) F(a(t−s) X(s)+b(t−s) V(s)) ds dv>Lp

[ K 1F
t

0
s3/p−1 ds2

1/p

[ K (4.16)

since 3/p > 0. The last term with r0 is rather easy to control

||r0(t, .)||Lq =1F 1F f
0(X, V) dv2

q

dx2
1/p

[ K 1F |aX+bV|3q−3 |f0| (X, V) dx dv2
1/p

(4.17)

because, as before, “V
“v is as close as we want to K.Id with K positive and

bounded, as explained in the Lemma 4.2. Now of course to have ER in Lp,

we need r0 in Lq with 1/p=1/q−1/3, which implies that 3q−3 [ p−3 for

q \ 2 or p \ 6. To conclude, if we put all these informations together, we

obtain that for k > 3 and for any t0, if t [ t0

||ER(t, .)||Lk+3 [ K+K sup
s [ t 1F |ax+bv|k+e |f| (s, x, v) dx dv2

1/(k+3)

(4.18)
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and if t > t0

||ER(t, .)||Lk+3 [ ||ER(t0, .)||Lk+3+K log(t0)

× sup
t > s > t0 1F |ax+bv|k |f| (t, x, v, ) dx dv2

1/(k+3)

(4.19)

It is now necessary to express the moments in term of the Lp norm of E,
which is done by the lemma

Lemma 4.3. Suppose that |t|k |NF| ¥ L1 and E ¥ L1([0, T]×R3).
Then on the inverval [0, T], we have

F |ax+bv|k |f| (t, x, v) dx dv [ K+K F |a(0) x+b(0) v|k |f0| dx dv

+K 1F
t

0
||E||Lk+3 ds2

k+3

(4.20)

Proof. This lemma is the precise equivalent of the usual moment

lemma for Vlasov–Poisson. It is also proved by multiplicating the equation

by |ax+bv|k. L

We propagate the moments in two steps: first, we justify a short time

propagation and find an estimate for ||ER || at t0 thanks to formula (4.18)

and then we use formula (4.19) to prove it globally in time.

Lemma 4.4. There exists t0 and e such that

F
R

6
|ax+bv|k+e |f| (t, x, v) dx dv ¥ L.([0, t0]) (4.21)

Proof. Let us apply the Lemma 4.3 to the moment of order k+3+e.
For e small enough, this is less than k0 and so this moment is initially finite,

then

F |ax+bv|k+e |f| (t, x, v) dx dv [ K+K 1F
t

0
||E||Lk+3+e ds2

k+3

(4.22)

Using now Young inequality and a well known estimate, we write

||E(s, .)||Lk+3+e [ K ||r||L(l+3)/3 [ K 1F |ax+bv| l |f| dx dv2
3/(l+3)

(4.23)
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with 1/(k+3+e)=3/(l+3)−1/3. Since k > 3, for e small enough, it is

possible to have l [ k. For such an e, we obtain for t bounded

F |ax+bv|k+e |f| (t, x, v) dx dv [ K+K 1F
t

0
F |ax+bv|k |f| dx dv2

a

(4.24)

with a a real number larger than 1. From this, we deduce the lemma. L

The formula (4.18) implies that there exists t0 such that ||ER(t0, .)||Lk+3

and > |ax+bv|k |f| (t0, ., .) are finite. To propagate after the time t0, we

combine the formula (4.19) and the Lemma 4.3 to get for t bounded

F |ax+bv|k |f| (t, x, v) dx dv [ K+K F
t

t0
F |ax+bv|k |f| (s, x, v) dx dv ds

(4.25)

This shows that the moment > |ax+bv|k |f| remains finite for all times in

[0, T], thus concluding the proof of the Theorem 1.2.
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